
AntMonitor: A System for Monitoring
from Mobile Devices

Anh Le
CalIT2, UC Irvine
anh.le@uci.edu

Janus Varmarken
IT Univ. of Copenhagen

janv@itu.dk

Simon Langhoff
IT Univ. of Copenhagen

siml@itu.dk
Anastasia Shuba

CalIT2, EECS, CPCC
UC Irvine

ashuba@uci.edu

Minas Gjoka
CalIT2, UC Irvine
mgjoka@uci.edu

Athina Markopoulou
CalIT2, EECS, CPCC

UC Irvine
athina@uci.edu

ABSTRACT
We propose AntMonitor – a system for passive monitoring,
collection and analysis of fine-grained, large-scale packet
measurements from Android devices. AntMonitor is the first
system of its kind that combines the following properties: (i)
it provides participating users with fine-grained control of
which data to contribute; (ii) it does not require administra-
tive privileges; (iii) it supports client-side analysis of traffic;
and (iv) it supports collection of large-scale, fine-grained,
and semantic-rich traffic. The first three properties benefit
mobile users, by giving them control over their privacy while
also enabling a number of services to incentivize their par-
ticipation. The last property makes AntMonitor a powerful
tool for network researchers who want to collect and ana-
lyze large-scale, yet fine-grained mobile measurements. As
a proof-of-concept, we have developed and deployed a pro-
totype of AntMonitor, and we have used it to monitor 9 users
for several months. AntMonitor has high network through-
put while incurring lower CPU and battery costs than exist-
ing mobile monitoring systems. Our preliminary experience
with the prototype demonstrates its capabilities and its po-
tential for enabling several research activities, including net-
work measurement from the edge, classification of mobile
traffic, and detection of privacy leakage and other malicious
behaviors.

CCS Concepts
•Networks→ Network monitoring; Mobile networks;

Keywords
Network Monitoring; Mobile Networks

This work has been supported by NSF Awards 1228995 and 1028394.
Varmarken and Langhoff were visiting UCI when this work was conducted.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

C2B(1)D’15, August 17–21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3539-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2787394.2787396

1. INTRODUCTION
Mobile devices, such as smart phones and tablets, have

become ubiquitous. With multiple wireless interfaces, in-
cluding Wi-Fi and 3G/4G, these devices have persistent In-
ternet connectivity throughout the day. In fact, the amount
of traffic generated by these devices has grown rapidly in re-
cent years and is expected to grow by 10 times in the next
5 years [1]. As a result, collecting and studying mobile net-
work traffic has become a critical task in network infrastruc-
ture planning and Internet measurement research.

There has been a rich body of literature that studies mo-
bile network traffic [2, 3, 4, 5, 6]. These studies often ex-
amine network traffic traces, which typically fall in one of
these two categories: either large-scale but coarse-grained
traces obtained in the middle of the network, i.e., traces from
Internet Service Providers (ISP) [2, 3]; or fine-grained but
small-scale traces from a limited set of users [4, 5]. These
limitations (i.e., coarse-grained or small-scale) as well as
privacy concerns for participating users, have held back re-
search progress in this area.

To this end, we present a system, called AntMonitor1, for
passive monitoring, collection, and analysis of actual net-
work traffic of Android devices. In contrast to existing ap-
proaches that use off-the-shelf software [7], we have de-
signed and implemented AntMonitor from scratch. The Ant-
Monitor system includes three components: an Android ap-
plication, AntClient, and two server applications, AntServer
and LogServer. The design aims specifically at enabling col-
lection of large-scale and fine-grained mobile network traf-
fic, in a way that benefits both the participating users and the
crowd-sourcing system, as discussed next.

Objective 1: Large-Scale Measurements:
Compatibility and Performance: AntMonitor utilizes the

public Virtual Private Network APIs [8] provided by the An-
droid OS (versions 4.0+) and is compatible with more than
94% of Android devices today [9] without requiring admin-
istrative privileges (root access). Furthermore, AntMonitor is
carefully implemented to achieve high network performance
with low overhead. The system is also designed to scale to
support tens of thousands of users.
1The name AntMonitor is inspired by the Anteater (the mascot of UC
Irvine, uci.edu/peter) and also by crowdsourcing monitoring to a
large number of mobile devices that work together like ants.

Privacy Control: To facilitate wide user adoption, Ant-
Client is designed to provide users with fine-grained control
over which data to contribute. In particular, they can choose
specific applications and either full packets or just packet
headers to contribute. To the best of our knowledge, Ant-
Monitor is the first system capable of offering this level of
privacy control.

Incentives for Participation: In order to attract a large
number of users, AntMonitor is designed to be able to of-
fer users with a variety of services including performance
(e.g., advertisement blocking) and security and privacy en-
hancement (e.g., preventing leakage of private information).
Furthermore, these could be done completely at the client
side, thanks to the custom built AntClient. For instance, a
user can protect her email address from leaking without the
need to disclose her email address to any remote server.

Objective 2: Fine-Grained Information:
Full Packet Capture: AntMonitor supports the collection

of all IP packets on an Android device, including both in-
coming and outgoing traffic. However, the user may decide
to contribute all or part of these packets to the repository,
depending on their privacy preferences.

Flexible Annotation: AntMonitor collects packet traces in
PCAP Next Generation format [10]. By supporting this for-
mat, the system is capable of collecting arbitrary informa-
tion alongside with the raw packets. This is very important
because, in many cases, the side information may only be
collected accurately at the client side and could play a crit-
ical role in subsequent analyses. For example, AntMonitor
currently collects names of applications that are associated
with packets, which provide the ground truth for application
classification (see Section 5.3).

Objective 3: Making it Attractive for Users: AntMonitor
lends itself to crowdsourcing by offering a combination of
incentives (e.g., the collected data can enable detection of
privacy leakage and other malicious behaviors), fine-grained
privacy control (e.g., the user can select which applications
to monitor, and whether to log full packets, headers-only or
even meta-data), ease of use (e.g., application does not re-
quire rooting the phone, simple interface with minimal con-
figuration, service working seamlessly in the background)
and high performance (i.e., modest CPU and battery penal-
ties that do not affect user experience, see Section 4.2).

As a proof-of-concept, we implemented a prototype of
AntMonitor and we have evaluated its performance using syn-
thetic and real-life usage scenarios. Results show that Ant-
Monitor achieves high network throughput performance while
incurring less CPU and battery overhead than existing state-
of-the-art mobile monitoring systems [7, 11] (see Section 4).
We have deployed the system and monitored volunteering
students at UCI for several months. We report the results
for a pilot measurement period that spans 5 weeks and 9
users. This experiment demonstrates the capabilities of Ant-
Monitor and more importantly, its potential to contribute to
the research progress of many applications, including clas-
sification of mobile applications and detection of leakage of
private information (see Section 5).

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 describes the design
and implementation of AntMonitor. Section 4 describes the
experiments and reports the evaluation results. Section 5
describes observations from the pilot deployment of Ant-
Monitor and gives preliminary results from applying the Ant-
Monitor system to research directions, such as network mon-
itoring, privacy leakage detection, and traffic classification.
Section 6 concludes the paper.

2. RELATED WORK
There is a large amount of work on collecting and analyz-

ing mobile network traffic [2, 3, 4, 5, 6, 12, 13, 14]. Here
we only discuss VPN-based approaches [7, 11] as they are
directly comparable to AntMonitor. VPN approaches have
admittedly several weaknesses: they alter the path of the
packets through a VPN server and introduce additional pro-
cessing to the packets. However, they do allow for passively
capturing actual network traffic on the device. Most im-
portantly, they work on most mobile devices today without
significantly impacting the user experience. All things con-
sidered, we find this approach most suitable to support our
identified objectives.

In server-based VPN approaches, packets are collected
and processed at the VPN server. Disadvantages of this ap-
proach include lack of client-side annotated information (i.e.,
there is no ground truth when mapping from packets to ap-
plications at the server), limited privacy protection (i.e., the
data is routed and logged at the same server), and complex
control mechanisms (i.e., the client has to communicate the
selections of functionalities, e.g., ad blocking, to the server).
As a representative of this approach, in Section 4, we con-
sider Meddle [7].

In client-based VPN approaches, the client establishes a
VPN service on the phone to intercept all IP packets. For the
captured outgoing packets, it extracts the content and sends
them through newly created protected UDP/TCP sockets [8]
so as to reach Internet hosts. Essentially, the client performs
a layer-3 to layer-4 translation per packet for outgoing traf-
fic and vice versa for incoming traffic. This client-based ap-
proach does not require a VPN server, but it may have high
overhead due to the need to maintain state per connection
and additional processing per packet. This affects the net-
work throughput as we show in Section 4, where we con-
sider tPacketCapture [11], an application currently available
on Google Play, as a representative of this approach.

We consider AntMonitor to be a hybrid VPN approach as
it supports both client and server-side analyses, thus com-
bining the best of both worlds. Analyses on the client can (i)
protect users in real time, (ii) provide fine privacy control as
the user can select which data to contribute, and (iii) provide
ground truth mapping of packets to applications and further
annotate the traces with rich context information available
on the device. Analyses on the server can be applied on a
large crowd-sourced dataset, thus having a more complete
global view than each individual device, and could also be
more complex, unconstrained by mobile CPU or battery.

UDP Tunnel

Target
Host on

the
Internet

Request

Network traffic log

Linux Server

Traffic Manager

Request Response

TUN

Android Device

P
rotected U

D
P

 S
ocket

Network traffic log

TUN

AntClient

U
D

P
 S

ocket

Linux Server

E
thernet (N

A
T)

Request

Request

Response

Response Response

Request

Packet flow

Traffic log flow
Application

Unprotected SocketUnprotected SocketUnprotected Socket

Request

Request

Response

Response

E
thernet (N

A
T)

Res
po

ns
e

Response

Response

Request Request

Log Analysis

VPN Manager

GUI Client Manager

AntServer

Log Manager

Analysis Module

LogServer

(a) (b)
Figure 1: (a) AntMonitor System Overview and (b) Screenshots of AntClient.

3. SYSTEM ARCHITECTURE

3.1 Design Overview
The AntMonitor system consists of three components: Ant-

Client, AntServer, and LogServer. Fig. 1(a) shows how the
three work together.

Traffic Interception. AntClient establishes a VPN service
on the device. This VPN service creates a virtual (layer-3)
TUN interface [8] and updates the routing table so that all
outgoing traffic, generated by any application on the device,
is sent to the TUN interface. AntClient then routes the pack-
ets to their target hosts. When a host responds, its packets
will be routed back to AntClient, as described below. Ant-
Client then sends the response packets to the applications by
writing them to the TUN interface.

Traffic Routing. AntClient sends the packets arrived at the
TUN interface through a UDP socket to AntServer, which
will further route the packets. To avoid having the outgo-
ing packets of this socket looped back to the TUN interface,
AntClient uses a protected UDP socket [8]. AntMonitor uses
UDP packets for tunneling because it is closest to IP packets
(stateless) so as to reduce overhead.

AntServer is configured to also have a TUN interface and
have IP Masquerade enabled (packet forwarding with Net-
work Address Translation). When AntServer receives a tun-
neled packet, it unwraps the packet and writes it to the TUN
interface. The packet is then forwarded to the target Internet
host of the packet. With IP Masquerade, this packet’s source
IP, which is a custom IP assigned to AntClient’s TUN inter-
face, is translated to the AntServer’s IP, and its source port is
also translated to a custom AntServer’s port. This translation
is to ensure that all responses from the Internet hosts are sent
to AntServer.

When there is a response packet sent by the target host, it
arrives at AntServer, and then the reverse translation is per-
formed: the packet’s destination IP and port (AntServer’s
IP and custom port) are translated back to the original Ant-
Client’s TUN interface IP and port. The packet is then avail-
able for reading from the TUN interface. Based on Ant-
Client’s TUN interface IP, AntServer then sends this response
packet through the appropriate UDP tunnel.

Traffic Logging. AntClient saves the intercepted outgo-

ing and incoming packets in log files in PCAPNG format
[10]. These log files are uploaded to LogServer for subse-
quent analyses at a later time: when the device is charging
and has Wi-Fi or when explicitly requested by the user.

Privacy Protection. When designing AntMonitor, we ex-
plicitly provide routing and logging functionalities using two
separate servers. This separation is to provide transparency,
fine-grained data collection, and enhanced privacy protec-
tion: (i) AntServer only routes traffic and must not log any
traffic (similar to most popular VPN services [15]), and (ii)
LogServer must only have access to the information explic-
itly allowed by the user (i.e., user must be able to choose
which applications to log).

3.2 Android Application: AntClient

AntClient is an Android application that does not require
root access and is compatible with more than 94% of An-
droid devices today (OS versions 4.0+). The application
is implemented as a VPN service and works seamlessly in
the background of the device, i.e., the user is able to use
her favorite applications as usual while running the service.
AntClient’s main functionality is to log, analyze, and route
network traffic. Unlike existing work [7] that uses an off-
the-shelf VPN client [16], we implemented AntClient from
scratch. This gives us the opportunity to simplify its de-
sign by stripping away non-critical yet cumbersome oper-
ations, such as, requiring a user to perform authentication,
and CPU taxing operations, such as, per packet encryption
(which should be optional). In addition, by developing the
system from the bottom-up, we can tightly integrate the log-
ging and analysis functionalities into the system. AntClient
consists of 4 main components: Graphical User Interface
(GUI), VPN Manager, Log Module, and Analysis Module.

Graphical User Interface allows the user to turn the VPN
service on and off. The GUI also allows the user to select
which applications are permitted to contribute to the data
collection. Furthermore, advanced users can also choose to
contribute only packet headers or full packets. Fig. 1(b)
shows several screenshots of AntClient’s GUI.

VPN Manager controls the TUN interface and the UDP
tunnel. Its main task is to route packets as described in
the previous section. VPN Manager is also responsible for

keeping the VPN service running uninterruptedly despite the
volatile mobile environment. In particular, VPN Manager is
equipped to deal with various network events, including net-
work errors and switching, e.g., when the device is moving
between Wi-Fi and cellular networks.

Log Module writes packets (or packet headers) to log files
and uploads the files to LogServer. When packets are inter-
cepted, Log Module first maps them to their corresponding
applications. The mapping is done by looking up the UIDs,
which represent the applications themselves, of the active
network connections available in /proc/net of the device.

Log Module supports storing of additional information of
the captured packets by using the PCAP Next Generation
format [10]. In our current implementation, we store the
raw packets along with their application names. Thanks to
PCAPNG flexible format, it is possible to extend the col-
lected information to include rich context, for example, the
status of the application associated with the traffic (uptime,
foreground vs. background), etc. Finally, Log Module peri-
odically uploads the log files to LogServer during idle time,
i.e., when the device is charging and has Wi-Fi connectivity.

Analysis Module can accommodate both off-line and on-
line analyses on intercepted packets, such as, detection of
leakage of private information, e.g., IMEI, device model,
etc. The online capability allows it to take action on live traf-
fic, for example, preventing private information from leak-
ing. Since the analyses are done at the client side, private
information is never leaked out of the device, setting Ant-
Monitor apart from server-based systems [7].

3.3 Routing Server: AntServer

AntServer manages the clients and routes their traffic. It
listens to incoming traffic on a single UDP port. The com-
munication between AntClient and AntServer follows a sim-
ple protocol, where messages are prefixed with a single byte
header. The value of the header indicates message type.

Client Manager accepts new client connections and keeps
track of the connected clients. To initialize the VPN service
on the device, AntClient sends a handshake message to Ant-
Server. Upon receiving this message, AntServer responds
to AntClient with TUN configuration parameters and starts
keeping track of the state of this client. The configuration
parameters include a private, unique IP address to assign to
the client’s TUN interface. To prevent resource leakage, Ant-
Server uses heartbeat messages to keep track of active clients
and remove inactive ones.

Traffic Manager routes content messages sent by clients
as we discussed in the overview. To support multiple clients,
Traffic Manager keeps track of the IP addresses of the clients’
TUN interfaces as well as the IP addresses of the clients
themselves, i.e., source IP addresses of the wrapped UDP
packets sent by the clients. Since the unique IP address of a
client’s TUN interface will become the target IP address of
response packets sent by the Internet hosts to this client, it
can be used together with the client’s IP to route the response
packets back to the correct client.

Scalability. We implement AntServer using Netty, a high
performance asynchronous event-driven network application

framework [17]. Our implementation is ready for deploy-
ment on a private Linux server, Amazon EC2, or Google
Compute Engine. Based on the current prototype’s CPU,
memory, and bandwidth usage, we estimate that a gigabit-
network server, e.g., a c4.2xlarge Amazon EC2 machine,
could support 500 concurrent users. Thus, supporting a large
user base could be done by using a more powerful machine
or by deploying more machines.

3.4 Data Collection Server: LogServer

LogServer serves as the central repository to store and
analyze all network traffic data. Since LogServer does not
have to handle a large amount of live traffic compared to
AntServer, it requires less resources to scale. Below are the
main components of LogServer.

Log Manager supports uploading files using multipart
content-type HTTPS. For each uploaded file, it checks if the
file is in proper PCAPNG format. If so, for each client, the
manager stores all of its files in a separate folder.

Analysis Module extracts features from the log files and
inserts them into a database to support various types of anal-
yses. Compared to the Analysis Module of AntClient, this
module has access to the crowdsourced data from a large
number of devices, thus suitable for global large-scale analy-
ses. For instance, it could detect global threats and outbreaks
of malicious traffic, which may not be possible to perform at
the client. In our current implementation, we have analyzed
the data to (i) investigate if mobile applications can be clas-
sified well based on packet headers and (ii) detect leakage of
personal information (see Section 5).

4. PERFORMANCE EVALUATION
All experiments were performed on a Nexus 6 with a Quad-

Core 2.7 Ghz CPU, 3 GB RAM, and 3220 mAh battery; the
AntServer ran on a Linux machine with 48-Core 800 Mhz
CPU, 512 GB RAM, and 1 Gbit Internet; the Wi-Fi network
is 5Ghz 802.11ac, and the cellular network is 4G LTE.

4.1 Stress Test
Here we compare AntMonitor against three baselines: No-

Vpn (not using a VPN service), tPacketCapture VPN v2.0.1
(a representative of the client-based VPN approaches as in
Section 2), and strongSwan VPN client v1.4.5, server v5.2.1
(the off-the-shelf software used by Meddle [7], a representa-
tive of the server-based VPN approaches as in Section 2).

Setup. For this set of experiments, we used a custom ap-
plication, called AntEvaluator, that performs downloads and
uploads of a large file over HTTP. It can collect various per-
formance statistics, such as, network speed, CPU usage, bat-
tery, etc. We performed the experiments on both Wi-Fi, with
a 1 GB file, and cellular, with a 100 MB file. For a fair
comparison, we hosted the VPN servers of strongSwan and
AntMonitor on the same machine. The files are hosted on a
machine within the same network of the VPN server. Dur-
ing the experiments, AntClient was logging packets of all ap-
plications. We ran all experiments with the phone screen
turned off and during late night hours in our lab to avoid in-

AntMonitor strongSwan tPacket NoVPN

(a) Wi-Fi (b) Cellular

Figure 2: Performance of AntMonitor, strongSwan, tPacket-
Capture, and NoVpn when downloading 1 GB file on Wi-Fi
802.11ac and 100 MB file on 4G LTE.

terference. For each experiment, we performed 10 runs and
calculated the averages and standard deviations.

Results. Figure 2 shows that on both Wi-Fi and cellu-
lar networks, the throughput of AntMonitor is comparable
to that of strongSwan and significantly outperforms tPacket-
Capture. It also shows that using VPN services does affect
the throughput. This is because with VPN, packets have ad-
ditional processing. We observed similar performance for
file upload experiments (omitted due to lack of space).

Figure 2(a) also shows that AntClient consumes less CPU
and battery than strongSwan on a high-speed Wi-Fi network.
The higher CPU usage of strongSwan could be because it
has to perform encryption or decryption per packet; how-
ever, this overhead is not noticeable on a slower network as
shown in Fig. 2(b). Although the CPU usage of 34–82% on
Wi-Fi seems high, the maximum CPU usage on the quad-
core Nexus 6 is 400%. AntMonitor also achieves similar
network latency to that of strongSwan, e.g., on Wi-Fi, Ant-
Monitor and strongSwan both have 12 ms average latency,
where the average latency of NoVpn is 8 ms.

4.2 Typical Day Test
Here we evaluate how AntMonitor impacts the usage expe-

rience of a typical mobile user.
Setup. Based on the 2014 Nielsen Survey [18], the 5 most

popular mobile application categories are the followings: (i)
Search, Portals & Social, (ii) Entertainment, (iii) Communi-
cation, (iv) Productivity, and (v) News & Information. To-
gether they take up 92% of the users’ application usage time.
We extract from the survey the average number of minutes
that a user spends on each of these categories per day. We
simulate a typical day of a mobile user by using represen-
tative applications in these categories. To repeat the experi-
ment multiple times, we record and replay our actions using
the Finger Replayer application [19].

More specifically, we simulate 58 minutes of application
use in total. This includes 11 minutes of Facebook (So-
cial: profile browsing), 11 minutes of Chrome (Search: web
browsing), 21 minutes of YouTube (Entertainment: video
streaming), 7 minutes of Gmail (Communication: email view-
ing, composition, and sending), 5 minutes of Google Keep
(Productivity: note reading and writing), and 3 minutes of
Reddit News (News: news reading). Each experiment was

Protocol Cellular Wi-Fi

TCP
HTTP 43.0% 53.5%
HTTPS 51.9% 43.6%
Other 1.9% 2.6%

UDP DNS 0.6% 0.1%
Other 1.4% 0.1%

ICMP 0.2% 0.0%
Total Volume (GB) 1.45 16.07

Table 1: Traffic collected from the user study.

Category % Bytes
Entertainment 45.5
Media & Video 19.6
Social 7.8
Music & Audio 7.7
Communication 7.6
News & Magazines 4.7
System 2.4
Travel & Local 1.2
Other 3.3

Figure 3: Top 10 popular applications and top categories of
traffic collected from the user study.

repeated 3 times for 2 settings: NoVpn and AntMonitor. Ant-
Client logs packets of all applications when used.

Results. When on Wi-Fi, the simulation uses on average
13% of the battery with NoVpn and 16% with AntMonitor.
AntClient also successfully mapped 99% of network flows to
applications. Similarly, when on cellular, the simulation uses
on average 14% of the battery with NoVpn and 17% with
AntMonitor. (Note that the Nexus 6 has one of the largest
batteries, at 3220 mAh.) In summary, these results show that
in a typical usage scenario than the stress test, AntMonitor
uses only a modest amount of 3% additional battery, which
will not significantly affect user experience.

5. USER STUDY
We recruited student volunteers from UC Irvine to use

AntClient on their phones. AntMonitor collects the packets of
the applications that the volunteers selected and logs them
at LogServer. This helped us debug the system over several
months and also provided preliminary data that we analyzed.
In this section, we present data of 9 volunteers during the pe-
riod of February 5 – March 15, 2015.

5.1 Data Summary
Table 1 shows the collected data categorized by transport,

application protocols, and network connectivity types. In
line with previous measurements [7], the majority of the net-
work traffic in smartphones consists of HTTP and HTTPS
data. AntMonitor also annotates each packet with the name
of its application, and we observed network traffic from 151
applications. Fig. 3 shows the volume of traffic of the top 10
applications and the relative amount of traffic per category.

5.2 Detection of Privacy Leakage
Personally Identifiable Information (PII) is information

that can be used to uniquely identify a single person or an
individual in a specific context. Such information is sensi-
tive and ideally should not be collected and/or transmitted in
plain text by applications. AntClient provides the user with

Personally Identifiable Info. # Leaking Apps # Users
IMEI 5 4
Android Device ID 4 6
Phone Number 1 1
Email address 1 1
Location 1 2

Table 2: Number of applications that leaked personally iden-
tifiable information in the collected data.

the ability to check whether any of the installed applications
are sending her PII out to the Internet. With AntMonitor,
checking whether PII is leaked can happen entirely at the
client, without the need to either send the PII to any remote
server [7], or have a customized OS or rooted device [20].

In our dataset, we tested for leaks of the following PII
groups: (i) IMEI, which uniquely identifies a device within
a mobile network, and Android Device ID, which is an iden-
tification code associated with a device; and (ii) phone num-
ber, email address and location, which uniquely associate
with users. Table 2 presents the results of our analysis. We
observe that 44% and 66% of the users have applications
that leak their IMEI and Android Device ID. The majority of
leaks are from a small number of applications, and these ap-
plications are seemingly harmless, e.g., iWindsurf, a weather
application, and Radio FM, an audio streaming application.
PII in the second group is rarely leaked, presumably because
it is considered sensitive by software developers. However,
there are a few exceptions, such as Evite, which leaks email
accounts in plain text.

5.3 Application Classification
We use supervised learning methods to build a multi-class

model that classifies network flows to specific applications.
Building profiles of applications using network-level fea-
tures can be useful in several ways, e.g., it can assist ISPs
who may want to understand and optimize the type of traf-
fic passing through their networks, and it can also facilitate
anomaly detection on the device. Our novelty compared to
previous approaches [21, 22] is that we use only layer-3 and
4 packet header features, and we have realistic network traf-
fic traces that reflect normal user behavior.

Methodology. We calculated a set of 84 network-level
features on both the upstream and downstream flows. These
are widely used features from network traffic classification
literature and can be partitioned into the following groups:
packet length statistics, payload length statistics, inter-arrival
time statistics, burstiness, overall flow statistics, and TCP
flags. We then performed classification on 70 applications
that have at least 30 flows. We used 10-fold cross-validation
to avoid overfitting and kept the same proportions of the ap-
plications in the testing and training.

Results. We are able to classify a flow to a specific ap-
plication with F1-score of 70.1% using a Linear SVM. To
put this result into context, Meddle [7] reports a 64.1% pre-
cision score in classifying flows for the 92 most popular
Android applications by using payload features: Host and
User-Agent. AppPrint [22] reports that in a large dataset of
millions of applications, only 1% of the flows can be classi-

fied by using features from HTTP headers. Interestingly, just
by using off-the-shelf learning tools, we are already able to
classify applications better than state-of-the-art approaches.
This is thanks to the fine-grained information available at
training: we can associate a packet with the application that
generated it.

6. CONCLUSION
In this work, we present AntMonitor – a system for crowd-

sourcing large-scale, yet fine-grained network measurements
from mobile devices. AntMonitor is designed from the bot-
tom up to bring benefits to both the crowdsourcing system,
network researchers and the participating users. AntMonitor
is designed to scale and is carefully implemented to achieve
high network performance with low CPU and battery over-
head. Our pilot deployment of AntMonitor shows that it can
greatly assist network research activities, including but not
limited to, network measurements, detection of malicious
behaviors, and traffic classification. Additional materials
and a video demo of AntMonitor can be found on our project
website [23].

7. REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update 2014-2019. http://goo.gl/Zu8f2r.
[2] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.

Identifying Diverse Usage Behaviors of Smartphone Apps. IMC’11.
[3] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network

Performance of Smart Mobile Handhelds in a University Campus
WiFi Network. IMC’12.

[4] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A First Look at Traffic on Smartphones. IMC’10.

[5] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger,
K. Papagiannaki, and J. Crowcroft. RILAnalyzer: A Comprehensive
3G Monitor on Your Phone. IMC’13.

[6] Netalyzr. https://goo.gl/i7HyLU.
[7] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang, S. Wang,

J. Sherry, P. Gill, A. Krishnamurthy, A. Legout, A. Mislove, and
D. Choffnes. Using the Middle to Meddle with Mobile. Technical
report, Northeastern University, Dec. 2013.

[8] Android VpnService. http://goo.gl/kV7ZZL, 2014.
[9] Android Versions. developer.android.com/about/dashboards.

[10] PCAPNG File Format. http://goo.gl/y89d9U.
[11] tPacket. www.taosoftware.co.jp/en/android/packetcapture.
[12] PhoneLab, University at Buffalo. https://www.phone-lab.org/.
[13] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance of

Metro Area Mobile Connections. IMC’12.
[14] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. ProfileDroid:

Multi-layer Profiling of Android Applications. MobiCom’12.
[15] Private Internet Access Privacy Policy. http://goo.gl/Yt8jNx.
[16] strongSwan VPN Client. https://goo.gl/okVQYL.
[17] Netty. http://netty.io.
[18] MultiMedia. Smartphones: So Many Apps, So Much Time, 2014.
[19] FRep - Finger Replayer. https://goo.gl/Qtfcva.
[20] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. OSDI’10.

[21] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song.
Networkprofiler: Towards Automatic Fingerprinting of Android
Apps. INFOCOM’13.

[22] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi. AppPrint:
Automatic Fingerprinting of Mobile Applications in Network
Traffic. PAM ’15.

[23] AntMonitor Project Website. http://antmonitor.calit2.uci.edu.

