
Demo: AntMonitor - a System for Mobile Traffic Monitoring
and Real-Time Prevention of Privacy Leaks

Anastasia Shuba
CalIT2, EECS, CPCC

UC Irvine
ashuba@uci.edu

Anh Le
CalIT2, UC Irvine
anh.le@uci.edu

Minas Gjoka
CalIT2, UC Irvine

mgjoka@uci.edu

Janus Varmarken
IT Univ. of Copenhagen

janv@itu.dk

Simon Langhoff
IT Univ. of Copenhagen

siml@itu.dk

Athina Markopoulou
CalIT2, EECS, CPCC

UC Irvine
athina@uci.edu

ABSTRACT
Mobile devices play an essential role in the Internet today, and there
is an increasing interest in using them as a vantage point for net-
work measurement from the edge. At the same time, these devices
store personal, sensitive information, and there is a growing number
of applications that leak it. We propose AntMonitor – the first system
of its kind that supports (i) collection of large-scale, semantic-rich
network traffic in a way that respects users’ privacy preferences
and (ii) detection and prevention of leakage of private information
in real time. The first property makes AntMonitor a powerful tool for
network researchers who want to collect and analyze large-scale yet
fine-grained mobile measurements. The second property can work
as an incentive for using AntMonitor and contributing data for anal-
ysis. As a proof-of-concept, we have developed a prototype of Ant-
Monitor, deployed it to monitor 9 users for 2 months, and collected
and analyzed 20 GB of mobile data from 151 applications. Prelim-
inary results show that fine-grained data collected from AntMonitor
could enable application classification with higher accuracy than
state-of-the-art approaches. In addition, we demonstrated that Ant-
Monitor could help prevent several apps from leaking private infor-
mation over unencrypted traffic, including phone numbers, emails,
and device identifiers.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network monitoring; D.4.6 [Operating Systems]: Security
and Protection—access controls

Keywords
Mobile Network Monitoring; Android Security; Privacy Leakage
Detection

This work has been supported by NSF Awards 1228995 and
1028394. Varmarken and Langhoff were visiting UCI when this
work was conducted.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
MobiCom’15, September 7–11, 2015, Paris, France.
ACM ISBN 978-1-4503-3543-0/15/09.
http://dx.doi.org/10.1145/2789168.2789170.

1. INTRODUCTION
Mobile devices, such as smart phones and tablets, have become

ubiquitous. With multiple wireless interfaces, including Wi-Fi and
3G/4G, these devices have persistent Internet connectivity through-
out the day. As a result, the amount of traffic generated by these de-
vices has grown rapidly in recent years and is expected to grow 10
times in the next 5 years [1]. Consequently, collecting and study-
ing mobile network traffic has become a critical task in network
infrastructure planning and Internet measurement research.

The growth of these mobile devices has been accompanied by an
increasing number of personal information leakage [2, 3]. Exam-
ples of such information include personally identifiable information
(PII) that can be used to uniquely identify an individual in a spe-
cific context (IMEI, email), data associated with the user (contacts,
SMS messages), and demographic information (age, location).

We present a novel system, called AntMonitor, to address the
needs of researchers for mobile traffic data and the needs of users
for enhanced privacy, as outlined below.

Objective 1: Large Scale, Semantic-Rich Data Collection.
First, AntMonitor is compatible with Android OS versions 4.0+,
which makes it work with more than 94% of Android devices today
[6]. Second, AntMonitor is carefully designed to scale and supports
tens of thousands of users [5]. Third, AntMonitor collects packet
traces in PCAP Next Generation format [7], which allows the sys-
tem to collect arbitrary information alongside with the raw packets,
such as the names of applications that are associated with packets.
Such information is only available at the client side, and yet it plays
a critical role in subsequent analyses by providing ground truth for
application classification. Last, AntMonitor is designed to provide
maximum user comfort: it has a simple interface with minimal con-
figuration, runs seamlessly in the background, does not require the
user to root the phone, and most importantly, has modest CPU and
battery usage while maintaining high network performance [5].

Objective 2: Enhanced User Privacy. First, to address privacy
concerns in data collection, AntMonitor is designed to provide users
with complete control over what data they may want to contribute.
In particular, they can choose specific applications, and either full
packets or just packet headers to contribute. Second, AntMonitor
is able to search unencrypted outgoing packets for sensitive infor-
mation. Moreover, it can prevent this information from leaking
on-the-fly, by blocking the current communication or replacing the
sensitive strings with randomly generated ones, depending on the
user’s decision.

UDP Tunnel

Target
Host on

the
Internet

Request

Network traffic log

Linux Server

Traffic Manager

Request Response

Android Device

P
rotected U

D
P

 S
ocket

TUN

AntClient

U
D

P
 S

ocket

Request

Request

Response

Response Response

Packet flow

Traffic log flow

Application

Unprotected SocketUnprotected SocketUnprotected Socket

Request

Request

Response

Response

Response

Response

Request Request

GUI Client Manager

AntServer

Linux Server

Log Manager

Analysis Module

LogServer

Log Analysis

VPN Manager

TUN

Request Response

Ethernet (NAT)

Figure 1: AntMonitor System Overview

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 describes the design and implementation of
AntMonitor. Section 4 describes the demo.

2. RELATED WORK
Data Collection. There is a large body of work on collecting and

analyzing network traffic data. Depending on the vantage point of
data collection, there are the following approaches: (i) applications
installed on the device [8], (ii) traffic collection inside the network
[9], (iii) custom operating systems or rooted phones [10, 11], and
(iv) the Virtual Private Network (VPN) based approach, which Ant-
Monitor takes. (i) provides fine-grained but small-scale traces from
a limited set of users; (ii) suffers from coarse-grained traces; and
(iii) inconveniences the user. Although the VPN approach (iv) al-
ters the path of the packets and introduces additional processing
per packet, it allows for interception of all network traffic, and thus
can enable useful features, e.g., privacy leakage prevention. Most
importantly, the VPN approach works on almost all mobile devices
today without significantly impacting the user experience.

Privacy Leakage Detection. Detecting leakage of privacy sen-
sitive data has also been extensively studied in the literature. Taint-
Droid [2] was one of the early tools built to identify privacy leaks
in realtime using taint tracking, and it was used to identify a vari-
ety of privacy leaks on 30 popular Android apps. Similar work [3]
automatically explores the GUI of Android apps and uses Taint-
droid to detect privacy leaks. These approaches, however, are not
suitable for large-scale deployment as they require a rooted phone.
Another approach is to use static analysis of binary code [12]; yet,
this method can be fooled by obfuscated code. Meddle [4] also
adopted the VPN-based approach and supports detection of leak-
age of sensitive information; however, this detection is carried out
at the VPN server, when the sensitive information already leaked
out of the device.

AntMonitor. The description of the prototype appears in the
SIGCOMM Workshop [5]. A video demonstrating the capabilities
of AntMonitor can be found on the project website [13].

3. SYSTEM OVERVIEW
The AntMonitor system consists of three components: a client-

side Android application, called AntClient, and two server appli-
cations, called AntServer and LogServer for routing and collecting
packets, respectively. Fig. 1 shows how the three work together.
Each component is described in detail elsewhere [5]. Here, we pro-
vide the overview of the functionalities of AntMonitor.

Traffic Interception and Routing. AntClient establishes a VPN
service on the device. This VPN service creates a virtual (layer-3)
TUN interface that intercepts all outgoing traffic. Once a packet
arrives at the TUN interface, AntMonitor sends it through a UDP
socket to AntServer. AntServer routes the packets to the intended
Internet host and delivers responses back to AntClient using another
TUN interface and IP Masquerading (packet forwarding with Net-
work Address Translation).

Data Collection. AntClient saves packets in log files and uploads
them to LogServer at a later time, e.g., when the device is charging
and has Wi-Fi or when explicitly requested by the user. LogServer
extracts features from the log files and inserts them into a database
to support various types of analysis. LogServer receives crowd-
sourced data from a large number of devices, which enables global
large-scale analysis. In our pilot deployment to volunteering stu-
dents at UC Irvine, we collected and analyzed 20 GB of data from
151 applications, and were able to classify network flows to a spe-
cific app with F1-score of 70.1% using a Linear SVM [5]. To put
this result in context, Meddle [4] reports a 64.1% precision score in
classifying flows for the 92 most popular Android applications by
using the Host and User-Agent payload features.

Enhanced Privacy Control. When designing AntMonitor, we
made an explicit decision to decouple the routing and logging func-
tionalities: they are provided by two separate servers. This sepa-
ration is to provide transparency, fine-grained data collection, and
enhanced privacy control. Our design choices for privacy are as
follows: First, AntServer only routes traffic and must not log any
traffic. This is in line with privacy protection provided by some of
the most popular VPN services [14]. Second, the LogServer, which
logs and analyzes traffic, must only have access to the information
explicitly allowed by the user. In other words, the user must be able
to choose which applications to log, as shown in Fig. 2(c).

Privacy Leakage Prevention. AntClient allows users to config-
ure which private information they want to prevent from leaking,
as shown in Fig. 2(d). The information can be of two types: (i)
sensitive information that is readily available to applications on the
phone, such as, IMEI, email, and phone number, or (ii) custom
strings that the user wants to protect. Examples of custom strings
include a user’s home address, ethnicity, gender, age, etc. This type
of information is typically not stored on the phone; however, a user
may input and send them to a friend in a previous communication,
and the user wants to make sure that no other apps can sniff (e.g.,
keyboard apps) and send this information elsewhere.

If the user selects one or more strings to protect (as shown in
Fig. 2(d)), then AntClient inspects every outgoing packet for any
of the protected strings, before sending it out. The search is cur-
rently implemented with the widely used Aho-Corasick algorithm
[15]. If a string is found within the packet, AntClient notifies the
user, as shown in Fig.2(e). The user is then able to either allow the
packet to continue on its way, replace the sensitive string, or block
it. As deep packet inspection is costly, we have implemented this
part of AntClient in native C so as not to significantly impact CPU
usage and battery life. It has been shown that the Aho-Corasick al-
gorithm is able to reach gigabits per second throughput [16], which
is sufficient for mobile devices whose wireless networks typically
reach several megabits per second. Although the current version

(a) Icon (b) Home Screen (c) Selecting Apps for
Data Collection

(d) Selecting Strings
for Inspection

(e) Privacy Leak Notifi-
cation

(f) History of Leaks

Figure 2: Screenshots of AntClient. A video demo can be found on the project website [13].

of AntClient can only search through unencrypted traffic, we are
working on an improved version that can inspect encrypted traffic,
leveraging the SSL Bumping technique [17, 4].

4. DEMONSTRATION

4.1 Description
Our demo will consist of two parts: the first one will show how

users can contribute data, and the second will demonstrate how Ant-
Monitor detects and prevents privacy leaks in real time.

In the first demo, we will start by opening AntClient on an An-
droid phone and connecting it to the AntServer, as shown in Fig.
2(b). Then we will select some apps whose traffic will be logged,
as shown in Fig. 2(c). Next, we will continue to use the phone as
usual, e.g. check weather, email, and play a game. Afterward, we
will ask AntClient to upload data to LogServer. We will observe the
log files arriving at LogServer by showing the LogServer’s database
on a laptop screen. We will also demonstrate real-time measure-
ments that show the high performance (throughput and delay) and
low cost (battery consumption) of AntClient.

In the second demo, we will navigate to AntClient’s privacy screen,
as shown in Fig. 2(d). We will then select IMEI, device ID, email,
and phone number to monitor and use several apps known to leak
them. When a leak occurs, AntClient will generate a notification,
as shown in Fig. 2(e). We can then either allow the leak, replace
the leaking string, or block the leak (packet) completely. Lastly, we
will navigate to AntClient’s leak history screen to review the num-
ber of leaks from the apps we used and the actions (allow, replace,
block) we took, as shown in Fig. 2(f).

4.2 Setup Requirement
Our demo requires one Android phone (or several phones to

demo to more than one users at the booth at the same time) and
one laptop that we will provide on our own (a screen would be nice
to have, but optional). We need Internet connectivity for both the
phones and the laptop, preferably Wi-Fi. (We will try to get 4G for
the phones at the venue but from our past experience, this can be
difficult.) A small table with a close-by power outlet will suffice.
The setup requires preparing the phones and the laptop and will
take about 10 minutes.

5. REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update 2014-2019. http://goo.gl/Zu8f2r.

[2] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS), 2014.

[3] Vaibhav Rastogi, Yan Chen, and William Enck.
Appsplayground: automatic security analysis of smartphone
applications. In Proc. of the 3rd ACM conference on Data
and application security and privacy (CODASPY), 2013.

[4] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang, S. Wang,
J. Sherry, P. Gill, A. Krishnamurthy, A. Legout, A. Mislove,
and D. Choffnes. Using the Middle to Meddle with Mobile.
Technical report, Northeastern University, Dec. 2013.

[5] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia
Shuba, Minas Gjoka, and Markopoulou Athina. AntMonitor:
A System for Monitoring from Mobile Devices. In (to
appear) Proc. of ACM SIGCOMM Workshop on
Crowdsourcing and Crowdsharing of Big Data, 2015.

[6] Android Versions.
developer.android.com/about/dashboards.

[7] PCAPNG File Format. http://goo.gl/y89d9U.
[8] J. Sommers and P. Barford. Cell vs. WiFi: On the

Performance of Metro Area Mobile Connections. In Proc. of
IMC, 2012.

[9] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman. Identifying Diverse Usage Behaviors of
Smartphone Apps. In Proc. of IMC, 2011.

[10] PhoneLab, University at Buffalo.
https://www.phone-lab.org/.

[11] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A First Look at Traffic on Smartphones. IMC’10.

[12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale. In
Proc. of the International Conf. on Trust and Trustworthy
Computing, 2012.

[13] AntMonitor: Project Webpage and Demo.
http://antmonitor.calit2.uci.edu/.

[14] Private Internet Access Privacy Policy.
http://goo.gl/Yt8jNx.

[15] Multifast. http://multifast.sourceforge.net/.
[16] Nathan Tuck, Timothy Sherwood, Brad Calder, and George

Varghese. Deterministic memory-efficient string matching
algorithms for intrusion detection. In Proc. of INFOCOM’04.

[17] Squid Proxy. Squid-in-the-middle SSL Bump.

