
Demo: AntWall - A System for Mobile Adblocking and Privacy
Exposure Prevention*

Anastasia Shuba
UC Irvine

ashuba@uci.edu

Athina Markopoulou
UC Irvine

athina@uci.edu

ABSTRACT
Mobile devices have become an essential part of our every-day
lives but are also suffering from various privacy and security risks.
The ease of app development has led to a plethora of apps that
employ poor security practices and often expose personal identifiers
to remote servers. Moreover, these privacy exposures often come
from third-party libraries that are leveraged by multiple apps, leading
to cross-app tracking of users. This tracking is typically used to serve
personalized ads, which cost the user extra data and take up screen
real estate. In this demo, we will showcase AntWall, a system for
preventing exposures of personal information and blocking ads.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Networks →

Network monitoring;

KEYWORDS
Privacy, Ad blocking, Network Monitoring

ACM Reference Format:
Anastasia Shuba and Athina Markopoulou. 2018. Demo: AntWall - A System
for Mobile Adblocking and Privacy Exposure Prevention. In Mobihoc ’18:
The Eighteenth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, June 26–29, 2018, Los Angeles, CA, USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3209582.3225207

1 SYSTEM OVERVIEW
System Architecture. In order to prevent mobile apps from fetching
ads and/or sharing personally identifiable information (PII) over the
network, one needs visibility into the network traffic generated by
all apps. However, this is typically impossible without modifying the
Android OS or rooting the phone, due to the way Android separates
different apps in user-space. To address this challenge, we choose
to operate at a different layer: we inspect all network traffic in and
out of the device by leveraging the VPN APIs that have been made
available since Android 4.0+, and are now also available on iOS.
This allows us to block ads and prevent privacy exposures completely
from user space. We use the AntMonitor Library [2], which runs a VPN

*This work has been supported by NSF Award 1649372, a DTL Grant 2016, and CPCC
at UCI. A. Shuba has been partially supported by an ARCS Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Mobihoc ’18, June 26–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5770-8/18/06. . . $15.00
https://doi.org/10.1145/3209582.3225207

service on the device but without re-routing traffic to a remote VPN
server. The library exposes the necessary APIs to intercept traffic
and has minimal impact on device resources. We refer the reader to
[2] for details on the library. The AntWall architecture is shown in
Fig. 1(a): AntWall receives outgoing IP packets via the PacketFilter
interface provided by the AntMonitor Library and determines whether
or not these packets contain PII and/or a request for an ad.

Detecting PII. In this work, we assume that the system knows
the set of PII in advance. This is a reasonable assumption as most
PII (such as email address and phone number) are available to any
Android app through APIs, and AntWall provides a GUI for users
to enter more PII of interest (Fig. 2(a)). For each outgoing packet,
AntWall uses the Aho-Corasick algorithm (also provided by the Ant-
Monitor Library) to find PII in one pass of the packet. Whenever a
PII is detected, the user is notified. From there, the user can decide
to allow the PII exposure to happen, replace the exposed PII with a
random string of the same length (so as not to alter the payload size),
or block the packet completely (Fig. 2(b)). Whichever action the
user picks is remembered for future occurrences of the same PII and
offending app combination, and can be changed at any time by the
user in AntWall’s settings (Fig. 2(c)). AntWall also provides a visual
graph of connections made by other apps in real-time (Fig. 2(d)).

Blocking Ads. To block ads (Fig. 2(e)), AntWall blocks any out-
going packet containing a request for an ad. Since there are no ad
blocking lists that have been tailored to mobile devices [1], we had
to manually create additional rules to supplement the most popular
ad blocking list - EasyList. We then used our modified EasyList to
label outgoing packets from 50 most popular Android apps that dis-
play ads. The data collection was done using the AntMonitor Library,
and the packets were saved in PCAPNG format, which is especially
useful as it allows us to annotate each packet with a comment. In
our case, we use the comment to label the packet with the following
information: which app is responsible for generating the packet,
what PII it contains, and whether or not it contains a request for an
ad. We use these labels, along with the packet data, to train a C4.5
Decision Tree (DT) classifier that predicts whether or not a given
packet is requesting an ad. For more details about feature extraction,
feature selection, and training, we refer the reader to our full paper
[3]. Our classifier is able to achieve F1 scores of over 95%, even
when tested on applications that were not part of the training set.

Performance Evaluation. To evaluate the performance of Ant-
Wall we ran the Ookla Speedtest and sampled the overall system CPU
and memory usage using the top command. We evaluted 3 scenarios:
(i) raw device performance, (ii) the device with the AntMonitor Library
intercepting packets, and (iii) the full AntWall system, where packets
were intercepted and inspected for PII and ad requests. Each test case
was repeated 5 times on the Pixel device, running Android 8.1, and
containing only basic system apps, the Speedtest app, and various

https://doi.org/10.1145/3209582.3225207
https://doi.org/10.1145/3209582.3225207

Mobihoc ’18, June 26–29, 2018, Los Angeles, CA, USA A. Shuba et al.

Android Device

Storage
SQL Table

App
GUI

AntMonitorLib

Target
Internet

Host
Other
Apps

Online
Traffic

Logging

Connector Type

Visualization

AntWall
Block Ad

Classifiers

DPI

Features PII

Packet Filter Block Leak

(a) System architecture (b) Up- and downlink speeds, and latency (ping) as re-
ported by Speedtest

(c) Overal system CPU (out of 400% on a quad-core) and
memory usage as reported by the top command

Figure 1: System overview: architecture and performance

(a) Partial list of PII to protect (b) A real-time notification of an ex-
posure

(c) Adjusting settings for PII/app
combos of past leaks

(d) Real-Time Visualization: which
apps connect to which servers

(e) Ad blocking in action

Figure 2: Screenshots of AntWall in action: (a)-(d) blocking PII leaks and (e) blocking ads, both in real-time.

versions of the AntWall app. The experiments were performed in our
lab during late night hours to minimize network interference. As
we show in Fig. 1(b), both the AntMonitor Library and AntWall have
negligible impact on the network throughput. However, intercepting
packets adds ~2ms to latency, as indicated by Speedtest ping results.
We believe this to be of minimal impact on user experience. More-
over, as shown in Fig. 1(c), most of the resource consumption comes
from the AntMonitor Library itself and the impact is minimal.

2 DEMONSTRATION PLAN
Description. Our demo will show AntWall’s capability to detect
exposures of PII and requests for ads across multiple apps without
significantly impacting CPU usage and network throughput. First,
we will use several apps with AntWall disabled. For example, we will
read an article inside Chrome, play Solitaire, and run Speedtest. All
of these apps will display ads and Speedtest will also display the
network speed of the raw device. Next, we will turn on AntWall and
repeat the same activities. This time, no ads will be shown, and we
will also see (through Speedtest) that AntWall does not significantly
impact the network throughput. Furthermore, AntWall will allow us
to block/replace/allow any privacy exposures made by apps such as
Speedtest. We will also showcase a test app and test server that we
made to prove that AntWall indeed can replace and block PII. Finally,
we will navigate to the visualization screen of AntWall (as in Fig.
2(d)) and we will see how many servers are being contacted in the
background as a result of only a few minutes of interaction with the
phone. During the demo we will have CPU overlay enabled from
Android Developer Options for real-time CPU usage statistics.

Video. A preliminary video of the demo is available at
http://athinagroup.eng.uci.edu/antwall-mobihoc-2018/.

Setup Requirements are minimal. Our demo requires one An-
droid phone (or several phones to demo to multiple people at once),
which we will provide on our own. We need Internet connectivity for
the phone, preferably Wi-Fi. A poster stand and a TV screen would
be preferred, but not required, for our demo. A small table with a
close-by power outlet will suffice (we will only use power for the
TV screen, if provided). The setup will only take several minutes.

3 CONCLUSION
In this demo we presented AntWall – a system for blocking exposures
of personal information and requests for ads. AntWall runs in the
background and does not require rooting the device. It has minimal
impact on network speeds and low resource usage. Although Ant-
Wall currently relies on manually labeled datasets to build classifiers
for ad blocking, in the future we hope to automate this process by
changing the Android OS to track whether the network requests
come from the app itself or from a third-party library.

REFERENCES
[1] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,

and E. Weippl. 2017. Block me if you can: A large-scale study of tracker-blocking
tools. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on.
IEEE, 319–333.

[2] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou. 2016. AntMonitor:
System and Applications. arXiv preprint arXiv:1611.04268 (2016).

[3] A. Shuba, Z. Shafiq, and A. Markopoulou. 2018. NoMoAds: Effective and Efficient
Cross-App Mobile Ad-Blocking. Proceedings on Privacy Enhancing Technologies
(2018). To Appear.

http://athinagroup.eng.uci.edu/antwall-mobihoc-2018/

	Abstract
	1 System Overview
	2 Demonstration Plan
	3 Conclusion
	References

